霧箱とCosmic Watchによる宇宙線観測

澤井愛実¹、星裕人²、小林南奈³、田中香津生^{4,5}

¹神奈川県立川和高等学校1年、神奈川県 ²武蔵高等学校中学校2年、東京都 ³東京電気大学未来科学部1年、東京都 ⁴加速キッチン合同会社、宮城県 ⁵早稲田大学理工学術院総合研究所、東京都

地上に降り注ぐ2次宇宙線は、小型で安価なCosmic Watchで検出することができる。先 行研究[1]からCosmic Watchで検出した際の2次宇宙線のADC値は分かっているものの、視 覚的に検証されていなかった。よって、本研究では、宇宙線やβ線などの放射線のエネル ギー値をADC値として測れるCosmic Watchと、飛跡から放射線の種類を特定できる霧箱を 用いた実験を行い、その結果から2次宇宙線のADC値について視覚的確証を得ることを目的 とした。また、本研究では、光速に近い速さで霧箱を通過する放射線をリアルタイムに識別 し、Cosmic WatchのADC値と同期することは難しいことから、実験中の霧箱内を録画 し、その動画に映った飛跡を分類、特定し、ADC値と同期するという方法をとった。その結 果、宇宙線及びβ線のADC値の頻度分布を得ることができた。これより、ADC値200以上が 2次宇宙線であるという視覚的確証が得られたと考えられる。

1. 背景

小型で安価なCosmic Watchを用いること で、多くがミュー粒子といわれる二次宇宙線 を検出することができる。Cosmic Watch は、飛来した放射線を感知するとシンチレー タが発光し、その発光を半導体で電流に増幅 変換して、電気信号を収集解析し、出力電圧 値を得ることが出来る。先行研究[1]から宇宙 線のADC値はおおよそ 200 以上とわかってい たが、これまで視覚的検証を伴う実験は行わ れていなかった。よって、本研究では視覚的 検証を得るため、放射線を識別できる霧箱と 放射線は識別できないが、放射線のエネル ギー値を得られるCosmic Watchを用いて実 験を行ない、考察をした。

2. 方法と結果

2.1. 実験方法

霧箱内に出現した飛跡とCosmic Watchで 得られるADC値の同期及び分類を行った。 「図1装置のイメージ図」を示す。放射線の飛 跡がシンチレーターを通る位置に、霧箱と Cosmic Watchを設置し、カメラで霧箱内の 飛跡を撮影する。霧箱内のアルコール過飽和 蒸気の中を放射線が通過するとその通り道に 沿って白い飛跡が可視化できる。この飛跡が シンチレーターに向かったもののみを同期の 対象とする。対象となった飛跡の中で、透過 率の高い宇宙線とβ線はCosmic Watchのシン チレーターを通過し、ADC値が測定できる。 霧箱で可視化した放射線の飛跡と、Cosmic WatchのADC値の画像をパソコンの画面上で 同期し、Screen Recordingで画面録画した。 測定は4時間4分間行った。録画した動画を0.1 ~0.5倍速でゆっくりと再生し、同期した飛跡 の特徴から宇宙線とβ線の分類(飛跡分類に所 要42時間)を行い、ADC値を記録した。

図1. 装置のイメージ図

2.2実験結果

飛跡の特徴(「図2宇宙線の特徴」、「図3β 線の特徴」)から分類を行う。

図2.宇宙線の特徴(長く直線的な飛跡)

図3.β線の特徴(細く曲がった飛跡)

Cosmic Watchの全count数及び、同期した 飛跡を分類した宇宙線と β 線のcount数を「表1 count結果」に示す。また、全データのADC 値の頻度分布は「図4全データの頻度分布」の ようになった。このうち同期できた宇宙線の 頻度分布は「図5宇宙線の頻度分布」のように なり、出力電圧値216以上(参照:)と確認 できた。また、216未満には確認されなかっ た。「図6 β 線の頻度分布」から β 線のADC値 は全体的に分布しているが、特に200以下(参 考:)に集中する結果となった。

表1. count結果		
	1分当たりのcount数	全count数
全データ	78.00	19,032
宇宙線	0.25	61
β線	1.38	337

図4.全データの頻度分布

図6.β線の頻度分布

3. 考察・結論

実験結果から、霧箱の飛跡とCosmic Watchを組合せ、Screen Recordingで同期す ることで、宇宙線と β 線のADC値を測定する ことができた。このため、今回の実験方法が 有効であると考えられる。同期した宇宙線の ADC値は216以上であることがわかった。こ のことから、このCosmic Watchで得た宇宙 線のADC値は先行研究[1]のおおよそ200以上 と矛盾が無いことがわかった。 β 線を霧箱で可 視化することで出力電圧値は200以下に多く存 在することが分かった。

4. 展望

本研究の展望として、今回の研究の信憑性 を向上させるため、同期した放射線のデータ 数を増やすこととシミュレーションを行いβ線 がプラスチックに当たった時におとすエネル ギー値を求めることが挙げられる。また、ラ ジウムボールからでるβ線、α線をアルミ板で 遮蔽し、ガンマ線がラジウムボールから放出 されていることを確認する。

5. 先行研究・参考文献

[1] 開成高校 平悠人 / 富士山での宇宙線
観測~CosmicWatchによる連続的な測定~
/ハイスクール・ラジエーションクラス発表
会 / 2022年10月30日

[2]日比谷高校 木村萌恵 / 宇宙線検出器 のエネルギー校正 /

https://www.jpgu.org/meeting_j2021/publi cPDF/O07-P32.pdf/2022年7月26日閲覧

[3]熊本高等専門学校 岩下将大、小田明範/ 画像処理技術を用いた放射線教育教材の開発 /

https://kumamoto-nct.ac.jp/file/knct-kiyo u-2017/pdf/no09.pdf / 2022年7月29日 閲覧

[4]奈良女子大学 藤川美幸希、余川真純 / シンチレーションカウンターを用いた Muon の寿命の測定 /

https://webhepl.cc.nara-wu.ac.jp/old_HP/ thesis/4kaisei/fujikawa-yokawa2003/fujik awa-thesis.pdf / 2022年9月11日閲覧

[5]高森圭介「ニュートン別冊 素粒子のすべ て」 ㈱ニュートンプレス

[6]田中宏幸、竹内薫「素粒子で地球を視る 高エネルギー地球科学入門」東京大学出版会

[7]山崎耕造「トコトンやさしい宇宙線と素粒子の本 」 日刊工業新聞社